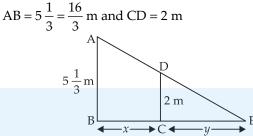
Q6. Find the approximate value of (1.999)⁵. **Sol.** $(1.999)^5 = (2 - 0.001)^5$ x = 2 and $\Delta x = -0.001$ Let $u = x^{5}$ Let Differentiating both sides w.r.t, x, we get $\frac{dy}{dx} = 5x^4 = 5(2)^4 = 80$ $\Delta y = \left(\frac{dy}{dx}\right) \cdot \Delta x = 80 \cdot (-0.001) = -0.080$ Now $(1.999)^5 = y + \Delta y$... $= x^5 - 0.080 = (2)^5 - 0.080 = 32 - 0.080 = 31.92$ Hence, approximate value of (1.999)⁵ is 31.92. **Q7.** Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively. **Sol.** Internal radius r = 3 cm and external radius $R = r + \Delta r = 3.0005$ cm $\Delta r = 3.0005 - 3 = 0.0005$ cm ... $y = r^3 \implies y + \Delta y = (r + \Delta r)^3 = R^3 = (3.0005)^3$ Let ...(i) Differentiating both sides w.r.t., r, we get $\frac{dy}{dr} = 3r^2$ $\Delta y = \frac{dy}{dr} \times \Delta r = 3r^2 \times 0.0005$... $= 3 \times (3)^2 \times 0.0005 = 27 \times 0.0005 = 0.0135$ $(3.0005)^3 = y + \Delta y$ [From eq. (i)] ... $= (3)^3 + 0.0135 = 27 + 0.0135 = 27.0135$ Volume of the shell = $\frac{4}{3}\pi [R^3 - r^3]$ $=\frac{4}{3}\pi [27.0135 - 27] = \frac{4}{2}\pi \times 0.0135$ $= 4\pi \times 0.005 = 4 \times 3.14 \times 0.0045 = 0.018 \,\pi \,\mathrm{cm}^3$ Hence, the approximate volume of the metal in the shell is 0.018π cm³. **Q8.** A man, 2m tall, walks at the rate of $1\frac{2}{3}$ m/s towards a street

Q8. A man, 2m tall, walks at the rate of $1\frac{2}{3}$ m/s towards a street light which is $5\frac{1}{3}$ m above the ground. At what rate is the tip of his shadow moving? At what rate is the length of the shadow changing when he is $3\frac{1}{3}$ m from the base of the light?

....

Sol. Let AB is the height of street light post and CD is the height of the man such that



Let BC = x length (the distance of the man from the lamp post) and CE = y is the length of the shadow of the man at any instant. From the figure, we see that

 $\Delta ABE \sim \Delta DCE$ [by AAA Similarity] Taking ratio of their corresponding sides, we get

	0			-	0	0
		AB	BE	AB	BC + CE	
		CD	$= \frac{1}{CE} \Rightarrow$	CD =	CE	
		16/3	x + y		x + y	
\Rightarrow		2	- <u>v</u>	$\Rightarrow \overline{3}$	= <u>v</u>	
\Rightarrow		8y =	= 3x + 3y	$\Rightarrow 8y$	-3y = 3x	$\Rightarrow 5y = 3x$

Differentiating both sides w.r.t, t, we get

$$\frac{dy}{dt} = 3 \cdot \frac{dx}{dt}$$

$$\Rightarrow \quad \frac{dy}{dt} = \frac{3}{5} \cdot \frac{dx}{dt} \quad \Rightarrow \quad \frac{dy}{dt} = \frac{3}{5} \cdot \left(-1\frac{2}{3}\right) = \frac{3}{5} \cdot \left(\frac{-5}{3}\right)$$

$$[\because \text{ man is moving in opposite direction}]$$

$$= -1 \text{ m/s}$$

Hence, the length of shadow is decreasing at the rate of 1 m/s. Now let u = x + y

(*u* = distance of the tip of shadow from the light post) Differentiating both sides w.r.t. *t*, we get

$$\frac{du}{dt} = \frac{dx}{dt} + \frac{dy}{dt} = \left(-1\frac{2}{3} - 1\right) = -\left(\frac{5}{3} + 1\right) = -\frac{8}{3} = -2\frac{2}{3}$$
 m/s

Hence, the tip of the shadow is moving at the rate of $2\frac{2}{3}$ m/s towards the light post and the length of shadow decreasing at the rate of 1 m/s.